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a b s t r a c t 

The paper reports on application of the Gompertz model to describe the growth dynamics of COVID- 

19 cases during the first wave of the pandemic in different countries. Modeling has been performed for 

23 countries: Australia, Austria, Belgium, Brazil, Great Britain, Germany, Denmark, Ireland, Spain, Italy, 

Canada, China, the Netherlands, Norway, Serbia, Turkey, France, Czech Republic, Switzerland, South Korea, 

USA, Mexico, and Japan. The model parameters are determined by regression analysis based on official 

World Health Organization data available for these countries. The comparison of the predictions given 

by the Gompertz model and the simple logistic model (i.e., Verhulst model) is performed allowing to 

conclude on the higher accuracy of the Gompertz model. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The recent coronavirus epidemic, which has affected all coun- 

ries, arouse a great deal of interest in mathematical models that 

llow describing the dynamics of the growth of new cases and pre- 

icting pandemic development. To the surprise of many, it turned 

ut that even the simplest logistic model based on the first order 

rdinary differential equation provided reasonable accuracy in de- 

cribing the number of cases in different countries during the first 

ave of the epidemic [1–6] . The classical logistic equation was pro- 

osed by Verhulst in 1838 [7] and has the following form: 

dN 

dt 
= rN 

(
1 − N 

N ∞ 

)
, (1) 

here N is the current number of infected persons, r is the infec- 

ion rate, and N ∞ 

is the total number of infected persons in the 

onsidered wave in the region. This model was further generalized 

y introducing power laws into various terms in Eq. (1) , which fol- 

owed by the development of various SIR-like models taking into 

ccount the number of infected, recovered, etc.; see for instance 

8–15] . 
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Meanwhile, historically, the Gompertz equation: 

dN 

dt 
= rN 

(
1 − ln N 

ln N ∞ 

)
(2) 

hould be recognized as the first model of this class, which was 

roposed as early as 1825 [2] . This model is not commonly used in

escribing the dynamics of the epidemic development, although it 

s mentioned in several papers and books on mathematical biology 

16–21] . We especially note one of the recent papers [20] , where 

his model was generalized in the same way as the classical logistic 

odel. 

This paper presents the study of the Gompertz model in its dif- 

erent variants (e. g., continuous and discrete times) applied to the 

OVID-19 spreading in different countries. 

. Gompertz model 

It is worth noting that the parameters of the Gompertz 

q. (2) are the same as the parameters of the classical logistic 

q. (1) and, in this connection, their solutions could be compared 

uantitatively. An analytical solution for the Eq. (2) could be ob- 

ained in the following form: 

(t) = N ∞ 

exp 

[ 
ln 

(
N 0 

N ∞ 

)
exp 

(
− rt 

N ∞ 

)] 
, (3) 

here N 0 is the initial number of infected persons. This solution 

ill be further employed in Section 4 for analysis of coronavirus 
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preading dynamics in different countries. For a qualitative analysis 

f the Gompertz equation it is convenient to use new variables. 

fter the substitution: 

= rt/ N ∞ 

, x = N/ N ∞ 

, (4) 

he Eq. (2) is reduced to: 

dx 

dτ
= −x ln x, 0 < x ≤ 1 , (5) 

n the paradigm of dynamical systems [ 22 , 23 ], the described sys-

em has two equilibrium states: x = 0 represents an unstable and 

on-rough state of equilibrium, while x = 1 is a stable rough state 

f equilibrium. All trajectories monotonically tend to a stable equi- 

ibrium state: 

 (τ ) = exp [ ln ( x 0 ) exp (−τ ) ] . (6) 

ote, that after the substitution 

 = ln (x ) , (7) 

he Eq. (5) is reduced to a trivial linear equation 

dy 

dτ
= −y, −∞ < y ≤ 0 , (8) 

iscretization of Eq. (8) leads to the Malthusian discrete equation: 

 n +1 = p y n , 0 < p = 1 − �τ < 1 , (9) 

here �τ is the time step which is not expected to be large. 

his transition has a single fixed point y = 0, which is stable. The 

q. (9) can easily be solved based on the initial number of infected 

ersons y 0 = ln ( N 0 / N ∞ 

) , we obtain 

 n = p n y 0 · or · N n 

N ∞ 

= 

(
N 0 

N ∞ 

)p n 

, (10) 

here is no qualitative difference between solutions of Gompertz 

quation with discrete and continuous time, and for a small time 

tep they go one into another. 

In order to account possible delay in the Gompertz equation let 

s introduce the delay time. Usually the delay time is introduced 

nto model to take into account the infection period (from 2 up to 

4 days for COVID-19). This parameter can be contained in differ- 

nt parts of Eqs. (2) and (5) . If the first equation term has a delay,

he equation has the following form: 

dx 

dτ
= −x (τ − T ) ln x (τ ) , 0 < x ≤ 1 , (11) 

here T is the delay time. The zero state of equilibrium in this case 

emains unstable, while х = 1 is stable for any delay time, and the 

onotonous variation of the number of infected persons is pre- 

erved. If the delay is contained in the second term of the Eq. (5) ,

fter the substitution (7) the following equation is obtained: 

dy 

dτ
= −y (τ − T ) , −∞ < y ≤ 0 , (12) 

his is equation was studied in details earlier [ 24 , 25 ]. The equilib-

ium state у = 0 ( х = 1) is stable when 

 < 

π

2 

(13) 

he Eq. (12) can be easily solved by the linear multistep method, 

nd in the case of the constant number of new cases in the time 

nterval τ < T its solution is expressed by 

 (τ ) = y 0 

E(τ /T ) −1 ∑ 

n =0 

(−1) 
n 

n ! 
[ τ − nT ] 

n 
. (14) 

he function y monotonically tends to zero with time (while x 

ends to unity), and only the rate of this tendency depends on the 

elay time. Note, that the presence of a delay time increases the 
2 
umber of parameters, and, hence, the dimensionality of the prob- 

em. 

The described above features of the Gompertz equation solu- 

ions in different forms will be used below to analyze the first 

ave of the COVID-19 pandemic in different countries. 

. Analysis of the COVID-19 pandemic data for determination 

f the model coefficients 

Let us compare the two mentioned above models based on lo- 

istic (1) and Gompertz (2) equations in description of the COVID- 

9 epidemic progression using the official data for the first wave 

f coronavirus infection in 23 countries: Australia, Austria, Bel- 

ium, Brazil, Great Britain, Germany, Denmark, Ireland, Spain, Italy, 

anada, China, Netherlands, Norway, Serbia, Turkey, France, Czech 

epublic, Switzerland, South Korea, USA, Mexico, and Japan. Initial 

ata on the number of cases were taken from the World Health 

rganization website ( https://www.who.int/ ). The data is updated 

aily, thus, the derivative dN/dt = K in the logistic equation can 

e associated with the number of daily new cases. Since our study 

s limited by the first wave of the epidemic only, a procedure for 

eparation of the epidemic waves was employed based on calcula- 

ion of the autocorrelation function. The first wave is determined 

s the period between the first two zero values for the autocorre- 

ation function. 

Fig. 1 shows official statistical data on daily new cases respect 

o the number of total cases together with two analytical approxi- 

ations using Eqs. (1) and (2) for 23 countries. The official statis- 

ics data features a fast increase in the number of new cases in the 

eginning of the pandemic followed by a slower decrease by the 

nd of the considered period, which is repeated by the analytical 

olution (red lines) obtained in the framework of the Gomperetz 

odel. Since the logistic equation produces a symmetric solution 

blue curves) respect to the center of the half number of the total 

ases, the Gompertz equation qualitatively provides a more accu- 

ate fit of the official data owing to higher flexibility. 

The standard approach to determination of the model parame- 

ers consists in minimization of the least mean square deviation of 

he model data from the official statistics. 

Table 1 shows the calculated coefficient of determination, R 

2 to- 

ether with coefficients r and N ∞ 

. The coefficient of determination 

s computed according to the equation 

 

2 = 1 −

n ∑ 

i =1 

(
K i − ˜ K i 

)2 

n ∑ 

i =1 

(
K i − K̄ i 

)2 
, (15) 

here K i is the number of infected persons on day i, ˜ K i is model 

alue, and K̄ i is average value. 

First of all, it is interesting to analyze the ratio of number 

f the total infected people to number of population in each 

ountry ( Fig. 2 a). Such values confirm the dangerous character of 

he COVID-19 epidemic. It is worth mentioning that Asian coun- 

ries (except Turkey) demonstrate the smallest values of this ra- 

io, while, on the other hand, American countries (except Canada) 

emonstrate the highest value. All the European countries demon- 

trate moderate values exceeding those for Asian one, however, 

maller than that for American ones. Australia demonstrates the 

alue below that for European countries, however, higher than that 

or Asian ones. Although, the set of countries is not fully represen- 

ative, one could expect typical regional values for different parts 

f the world. It is worth noting, that despite their geographical lo- 

ation, Turkey and Canada demonstrate values close to those typi- 

al for European countries. 

Correlation of the parameters derived from the both considered 

odels (i.e., Gompertz and logistic) is shown in Figs. 3–5 . First of 

https://www.who.int/
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Fig. 1. Number of daily new cases K versus total number of cases N and corresponding analytical approximations with logistic model (blue line) and Gompertz model (red 

line) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 
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Table 1 

Model and determination coefficients for two considered approximations (N p is population in each country). 

Model Gompertz equation Simple logistic equation 

№ Country r N ∞ R 2 N ∞ /N p × 10 r N ∞ R 2 N ∞ /N p × 10 

1 Australia 1.297 6974 0.81 0.003 0.21 6901 0.73 0.003 

2 Austria 1.079 16,155 0.82 0.019 0.16 15,950 0.67 0.018 

3 Belgium 0.743 59,278 0.79 0.052 0.1 57,350 0.66 0.050 

4 Brazil 0.26 6,834,000 0.67 0.329 0.03 6,120,000 0.58 0.295 

5 Great Britain 0.6 318,100 0.89 0.048 0.074 302,300 0.75 0.046 

6 Germany 0.9 183,500 0.83 0.022 0.1 181,300 0.67 0.022 

7 Denmark 0.5 12,580 0.74 0.022 0.075 12,110 0.64 0.021 

8 Ireland 0.75 25,620 0.8 0.054 0.12 24,990 0.79 0.053 

9 Spain 1.035 240,385 0.86 0.052 0.12 234,800 0.73 0.051 

10 Italy 0.749 253,625 0.92 0.043 0.12 234,800 0.73 0.040 

11 Canada 0.5 108,700 0.78 0.030 0.069 101,900 0.67 0.028 

12 China 1.21 82,700 0.91 0.001 0.16 81,860 0.8 0.001 

13 Netherlands 0.705 47,099 0.90 0.028 0.1 45,560 0.79 0.027 

14 Norway 0.701 8350 0.73 0.016 0.114 8182 0.6 0.016 

15 Serbia 0.69 11,650 0.83 0.013 0.12 11,140 0.77 0.013 

16 Turkey 0.826 166,042 0.89 0.021 0.1 161,100 0.62 0.020 

17 France 0.84 150,700 0.7 0.023 0.1 148,100 0.57 0.023 

18 Czech Republic 0.775 8191 0.71 0.008 0.134 7846 0.58 0.007 

19 Switzerland 1.005 30,638 0.87 0.036 0.14 30,230 0.76 0.036 

20 South Korea 1.026 10,829 0.72 0.002 0.13 10,850 0.49 0.002 

21 USA 0.56 2,247,000 0.78 0.068 0.05 2,351,000 0.52 0.071 

22 Mexico 0.23 1,044,000 0.89 0.08 0.031 869,200 0.88 0.067 

23 Japan 0.66 17,670 0.73 0.001 0.12 16,640 0.89 0.001 

Fig. 2. Maximal number of infected persons N ∞ normalized for country population N p (a) and maximal number of infected persons N ∞ versus N p (b) in Gompertz model. 

Fig. 3. Maximal number of infected persons N ∞ in simple logistic model and Gompertz equation for all considered countries (a) and correlation of the N ∞ normalized for 

total population N p for the two considered models (b). 
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Fig. 4. Infection rate r in simple logistic model and Gompertz equation (a) and r values acquired with Gompertz models versus logistic equation (b) for all considered 

countries. The red line shows regression line with coefficient of 5.9 (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.). 

Fig. 5. Comparison of the determination coefficients R 2 for the logistic equation and the Gompertz model. 

a

i

i

t

w

p

i

i

p

r

G

1

t

G

d

t

F

m

(

t

4

G

n

c

t

m

s

c

c

a

n

o

t

M

m

r

p

a

b

ll, it is worth noting that the estimations of the total number of 

nfected persons for the two models are in good agreement, which 

s quite expected [see Fig. 3 (a,b)]. 

At the same time, the infection rate is about 6-fold higher for 

he Gompertz model as compared to logistic equation ( Fig. 4 ), 

hich originates from a more accurate description on the left 

art of the official statistics data (initial development of epidemic) 

n Fig. 1 , which is faster than the relaxation period (right part 

n Fig. 1 ). Note, that for this case the regional effect is mostly 

ronounced for American countries demonstrating lower infection 

ate as compared to other continents. 

The coefficient of determination R 

2 appears to be higher for 

ompertz model as compared to the logistic equation for about 

3% ( Fig. 5 ) indicating better approximation of the official statis- 

ics curve. The results of the comparison allow concluding that the 

ompertz model is more suitable for describing the COVID-19 pan- 

emic spread owing to asymmetric shape of the provided solu- 

ions allowing to more accurately reproduce the real dependencies. 

rom all the considered countries only Japan shows better agree- 

ent with the logistic model as compared to the Gompertz model 

 Table 1 ), since its official statistic demonstrates a symmetric pic- 

ure (see Fig. 1 , Chart 21). 
5 
. Temporal dynamics of the total infected cases in the 

ompertz model 

The Gompertz model also allows to reproduce the temporal dy- 

amics of the total new cases. Corresponding dynamics for all the 

onsidered countries were calculated using formula (3) employing 

he coefficient values shown in Table 1 . Fig. 6 confirms good agree- 

ent of the Gompertz model with official statistics. However, in 

everal countries (Netherlands, Serbia, Turkey, and Czech) a dis- 

repancy is observed in the end of the considered period. In these 

ountries, the first wave has evolved into the second one without 

n evident break. In this connection, the saturation of the total 

umber of new cases predicted by the model is not observed in 

fficial statistics. Nevertheless, a good agreement in observed for 

hese countries in the active development phase of the first wave. 

oreover, the point where the official statistics deviates from the 

odel can be treated as the start of the second wave, and the pa- 

ameters of the second wave could be derived starting from this 

oint. 

Analysis of the Gompertz model with the delay term [ Eqs. (11) 

nd (12) ] demonstrated (we omit details of calculations), that the 

est fit solution for all the considered countries is provided in the 
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Fig. 6. Total number of new cases versus time: official statistics (black dots) and solution of the Gompertz equation (red line) (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.). 
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[

[

[

[

[
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ase without delay, moreover, the presence of T 2 delay results in 

igher deviation from the solution without delay as compared to 

 1 . 

. Conclusion 

The paper reported the analysis of the temporal dynamics of 

he number of infected persons during the first wave of COVID- 

9 pandemic in 23 countries: Australia, Austria, Belgium, Brazil, 

reat Britain, Germany, Denmark, Ireland, Spain, Italy, Canada, 

hina, Netherlands, Norway, Serbia, Turkey, France, Czech Repub- 

ic, Switzerland, South Korea, USA, Mexico, Japan. Observed data 

ere analyzed in the frames of classical logistic model and Gom- 

ertz model, both models have minimum number of the parame- 

ers (two) as compared to SIR-like models. The Gompertz model 

as demonstrated to provide better fit of official statistics data 

ompared to the solutions provided by the classical logistic equa- 

ion in all considered countries except Japan, which is presumably 

etermined by local features. The total new cases dynamics derived 

rom the Gompertz equation using the parameters extracted from 

tting dependencies of daily new cases versus total case number 

rovided good approximation of the official statistics, except coun- 

ries where the first and the second waves are not strictly sepa- 

ated. For these countries a discrepancy was observed in the end of 

he considered period, which can be employed as an approach for 

evealing the start of the second wave. Employment of the Gom- 

ertz model with delay for fitting official statistics data did not 

eveal any effect of the delay time in providing better fit of the 

fficial statistics. 

In conclusion we would like to mention again, the discrete 

ompertz model for small discretization time gives the same solu- 

ions as the continuous model. In this connection, the calculations 

n the frames of the discrete model were not performed. The same 

an be pointed for actively discussed effects associated with the 

elay time. Our computations with time delays in few days lead 

o worse agreement with official data as compared to the model 

ithout delay. 
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